Kubernetes Web View

Aug 24, 2023






Contents:

Getting Started 3
Vision & Goals 5
Features 7
3.1 Multiple CIuSters . . . . . . o o o o e e e e e e e e e e e e e e e 7
3.2 Listing Resources . . . . . . . . . . . e e e 7
3.3 Searching . . . . . . L e e e e e e e e e e e e 9
34 Viewing Resources . . . . . . . o o o i e e e e e e e 9
3.5 Container Logs . . . . . . oo e e e e e e e e e e 9
3.6 Custom Resource Definitions (CRDs) . . . . . . . . .. .. ... .. . . . . . . . 9
3.7 OAUth2 . . . e e e e e 9
Setup 11
4.1 Local Usage . . . . . . . o i i i e e e e e e e e e 11
42  Single CIuster . . . . . . . o o e e e e e 12
43  Multiple CIUSEEIS . . . . v v v o e e e e e e e e e e e e e e e e e e e e e e e 12
4.4 AccessControl . . . . . L e e e e e e e e e 13
4.5 Namespace ACCESS . . « ¢ v v v v v v e e e e e e e e e e e e e e e 13
OAuth2 Support 15
5.1 Google OAuth Provider . . . . . . . . . . . e e e e e 16
5.2 GitHub OAuth Provider . . . . . . . . . . . . . e 16
5.3 AWS Cognito Provider . . . . . . . . . oL e e e e e 17
Customization 21
6.1 Sidebar . . . . . L e e e e e 21
6.2 Label & Custom Columns . . . . . . . . . . o i e e 22
6.3 External Links . . . . . . . L e e e e e e e e 22
6.4  Search . . . . L e e e e e e 23
6.5 Preferred APL Versions . . . . . . . . o i i i e e e e e e e e e e e e e 23
6.6  Themes . . . . . . . L e e e e e e 23
6.7 HTML Templates . . . . . . . 0 o e e e e e e e e e e e e e 24
6.8 Static ASSELS . . . . e e e e e e e e e e e e e e e e e e e 25
6.9 Prerender HOOKS . . . . . . . . . . . e 25
Security Considerations 27




8 Alternative Uls 29

8.1 K8Dash . . . . . . e e e e e e e e 29
8.2 Konstellate . . . . . . . . e e e e e e e e e e e e e e e e e e 29
8.3  Kubernator . . . . . . . . e e e e e e e e e e e e e e e e 29
8.4 Kubernetes Dashboard . . . . . . . . . . . .. e e 30
8.5 Kubernetes Operational View . . . . . . . . . . . oL e e 30
8.6 Kubernetes Resource Report . . . . . . . . . . . e e e e 30
8.7  Kubevious . . . . . . . e e e e e e e e e e e e e e 30
8.8 Kubricks . . . . . . e e e e e e e e e e e 30
8.9 Octant . . . . . . e e e e e e e 30
.10 Weave SCope . . . . . o o i e e e 31
9 Indices and tables 33




Kubernetes Web View

Kubernetes Web View allows to list and view all Kubernetes resources (incl. CRDs) with permalink-friendly URLSs in
a plain-HTML frontend. This tool was mainly developed to provide a web-version of kubectl for troubleshooting and
supporting colleagues, see also Vision & Goals.

Git repo: https://codeberg.org/hjacobs/kube-web-view

Live demo: https://kube-web-view.demo.j-serv.de/

Contents: 1


https://codeberg.org/hjacobs/kube-web-view
https://kube-web-view.demo.j-serv.de/

Kubernetes Web View

2 Contents:



CHAPTER 1

Getting Started

You can find example Kubernetes manifests for deployment in the deploy folder. You need a running Kubernetes
cluster (version 1.10+) and kubect 1 correctly configured. A local test cluster with Minikube or kind will also work.
It should be as simple as:

$ git clone https://codeberg.org/hjacobs/kube-web-view
$ kubectl apply —-f kube-web-view/deploy

Afterwards you can open “kube-web-view” via kubectl port-forward (you might need to wait a bit for the pod to
become ready):

$ kubectl port-forward service/kube-web-view 8080:80

Now direct your browser to http://localhost:8080/

Note that pod container logs and Kubernetes secrets are hidden by default for security reasons, you can enable them by
uncommenting the respective CLI options in kube-web-view/deploy/deployment .yaml. See also Security
Considerations.

For guidance on setting up Kubernetes Web View for your environment, read the Serup section.



https://github.com/kubernetes/minikube
https://kind.sigs.k8s.io/
http://localhost:8080/

Kubernetes Web View

4 Chapter 1. Getting Started



CHAPTER 2

Vision & Goals

“kubectl for the web!”

Kubernetes Web View’s goal is to provide a no-frills HTML frontend for listing and inspecting K8s objects in trou-
bleshooting and incident response scenarios.

The main audience of Kubernetes Web View is experienced “power” users, on-call/SREs, and cluster operators. Un-
derstanding Kubernetes concepts and resources is expected.

The focus on troubleshooting and “kubectl on the web” led to the following design principles and goals:

enable all (read-only) operations where people commonly use kubect 1 as their tool of choice

all URLs should represent the full view state (permalinks) in order to make them shareable among colleagues
and facilitate deep-linking from other tools

all Kubernetes objects should be supported to be able to troubleshoot any kind of problem

resource lists should be easily downloadable for further processing (spreadsheet, CLI tools like grep) and
storage (e.g. for postmortems)

selecting resources by label (similar to kubectl get .. -1)should be supported

composing views of different resource types should be possible (similar to kubectl get all) to provide a
common operational picture among colleagues (e.g. during incident response)

adding custom “smart” deep links to other tools such as monitoring dashboards, logging providers, application
registries, etc should be possible to facilitate troubleshooting and incident response

keep the frontend as simple as possible (pure HTML) to avoid accidental problems, e.g. unresponsive JavaScript
support multiple clusters to streamline discovery in on-call situations (only one entry URL to remember)
facilitate ad-hoc analysis where possible (e.g. with download links for resources across clusters/namespaces)

provide additional deep-linking and highlighting, e.g. to point colleagues to a certain part of a resource spec
(line in YAML)

allow customization for org-specific optimizations: e.g. custom view templates for CRDs, custom table views,
custom CSS formatting




Kubernetes Web View

* provide means to continue investigation on the command line (e.g. by showing full kubect1 command lines
to copy)

Out-of-scope (non-goals) for Kubernetes Web View are:
* abstracting Kubernetes objects
* application management (e.g. managing deployments, Helm Charts, etc)
* write operations (this should be done via safe CI/CD tooling and/or GitOps)
* fancy UI (JavaScript, theming, etc)
* visualization (check out kube-ops-view)

* cost analysis (check out kube-resource-report)

6 Chapter 2. Vision & Goals


https://codeberg.org/hjacobs/kube-ops-view
https://codeberg.org/hjacobs/kube-resource-report/

CHAPTER 3

Features

3.1

Multiple Clusters

Kubernetes Web View can access one or more clusters via different methods:

In-cluster authorization via ServiceAccount: this is the default mode when deploying kube-web-view to a single
cluster

Static  list of cluster API  URLs passed via the --clusters CLI  option,
e.g. ——clusters=myprodcluster=https://kube-prod.example.org;
mytestcluster=https://kube-test.example.org

Clusters defined in kubeconfig file: kube-web-view will pick up all contexts defined in the kubeconfig file (~/ .
kube/config or path given via ——kubeconfig-path). To only show some clusters, limit the kubeconfig
contexts via the ——kubeconfig-contexts command line option.

Clusters defined in a cluster registry REST API: kube-web-view supports a custom REST API to discover
clusters. Pass the URL via ——cluster-registry—-url and create a file with the OAuth2 Bearer to-
ken (-—cluster-registry-oauth2-bearer-token-path). See the example Cluster Registry REST
APL

Static list of external kube-web-view instances passed via the ——external-clusters CLI option,
e.g. ——external-clusters=kube-web-view—-us=https://kube-web-view.mycompany.
com/us; kube-web-view—eu=https://kube-web-view.mycompany.com/eu

See also Multiple Clusters.

3.2

Listing Resources

Kubernetes Web View can list all Kubernetes resource types:

non-namespaced cluster resources under /clusters/{cluster}/{plural}

namespaced resources under /clusters/{cluster}/namespaces/{namespace}/{plural}



https://codeberg.org/hjacobs/kube-web-view/src/branch/master/examples/cluster-registry
https://codeberg.org/hjacobs/kube-web-view/src/branch/master/examples/cluster-registry

Kubernetes Web View

Multiple resource types can be listed on the same page by using their comma-separated plural resource names, e.g.
to list deployments and ingresses on the same page: /clusters/{cluster}/namespaces/{namespace}/
deployments, ingresses. Use _all to list all different resource types in a given namespace.

To list resources across all namespaces, use _all for the namespace name in the URL.
Resources can be listed across all clusters by using _al1 for the cluster name in the URL.
Resources can be filtered by label: use the selector query parameter with label key=value pairs.

To facilitate processing in spreadsheets or command line tools (grep, awk, etc), all resource listings can be down-
loaded as tab-separated-values (TSV). Just append download=tsv to the URL.

Columns can be customized via the labelcols and customcols query parameters:
e labelcols is either a comma separated list of label names or “*” to show all labels

* customcols is a semicolon-separated list of Name=spec pairs, where “Name” is an arbitrary column name
string and “spec” is a JMESPath expression: e.g. Images=spec.containers[*].image would show
the container images in the “Images” column. Note that the semicolon to separate multiple custom columns
must be urlencoded as $3B.

* hidecols is a comma separated list of column names to hide or “*” to hide all columns (label and custom
columns will be added after the hide operation)

The 1imit query parameter can optionally limit the number of shown resources.

3.2.1 Joins

Additional information can be “joined” to the resource list. The join query parameter allows the following two
values:

* When listing Pods or Nodes, join=metrics will join CPU/memory metrics to each Pod/Node.

e When listing Pods, join=nodes will join the Node object to each Pod. The Node object can be accessed via
node in the customcols JMESPath, e.g. ?join=nodes&customcols=node.metadata.labels
will add a column with all Node labels.

3.2.2 Examples

e List all Nodes with their allocatable memory: /clusters/_all/nodes?
customcols=Memory=status.allocatable.memory

* Find all Pods which are not running and have not finished: /clusters/_all/namespaces/_all/
pods?filter=Status!%$3DRunning%2CStatus!%$3DCompleted

e Find all Pods wusing the privileged PodSecurityPolicy: /clusters/_all/namespaces/
_all/pods?customcols=PSP=metadata.annotations.%22kubernetes.io/
psp%22&filter=privileged

e List all Pods and show their node’s zone (e.g.  AWS Availability Zone): /clusters/_all/
namespaces/_all/pods?join=nodes&customcols=AZ=node.metadata.labels.
"topology.kubernetes.io/zone"

e List all Ingresses with their custom Skipper filters: /clusters/_all/namespaces/
_all/ingresses?customcols=Filter=metadata.annotations."zalando.org/
skipper—-filter"

8 Chapter 3. Features


http://jmespath.org/

Kubernetes Web View

3.3 Searching

Any resource type can be searched by name and/or label value across clusters and namespaces. While Kubernetes
Web View does not maintain its own search index, searches across clusters and resource types are done in parallel, so
that results should be returned in a reasonable time. Please note that the search feature might produce (heavy) load on
the queried Kubernetes API servers.

3.4 Viewing Resources

Object details are available via /clusters/{cluster}/{resource-type}/{name} for cluster re-
sources and /clusters/{cluster}/namespaces/{namespace}/{resource-type}/{name} for
namespaced resources. Object details are either rendered via HTML or can be viewed as their YAML source. Re-
sources can also be downloaded as YAML.

To make it easier to point colleagues to a specific portion of a resource spec, the YAML view supports linking and
highlighting individual lines. Just click on the respective line number.

3.5 Container Logs

Kubernetes Web View supports rendering pod container logs for individual pods and any resource spec with
matchLabels, i.e. Deployments, ReplicaSets, DaemonSets, and StatefulSets. Just use the “Logs” tab or append
/logs to the resource URL.

Note that container logs are disabled by default for security reasons, enable them via ——show-container-logs.
Access logs are enabled by default, disable them via ——no-access-1ogs.

3.6 Custom Resource Definitions (CRDs)

Kubernetes Web View automatically works for your CRDs. The list (table) view will render similar to
the output of kubectl get .., ie. you can customize displayed table columns by modifying the
additionalPrinterColumns section of your CRD section. See the official Kubernetes docs on additional
printer columns for details.

3.7 OAuth2

The web frontend can be secured via the builtin OAuth2 Authorization Grant flow support, see the OAuth2 Support
section for details.

3.3. Searching 9


https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#additional-printer-columns
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#additional-printer-columns

Kubernetes Web View

10 Chapter 3. Features



CHAPTER 4

Setup

This section guides through the various options of setting up Kubernetes Web View in your environment.
* Do you want to use kube-web-view as a local development/ops tool? See Local Usage

* Do you want to use it in a single cluster or access multiple clusters via kube-web-view? See Single Cluster or
Multiple Clusters.

* How do you plan to secure your setup and authenticate users? See Access Control.
» Should users see everything in your cluster(s) or only some namespaces? See Namespace Access.
* Do you want to customize behavior and look & feel for your organization? See Customization.

* Please make sure to read the Security Considerations.

4.1 Local Usage

Kubernetes Web View was primarily built for a (central) deployment, but you can run it locally with your existing
Kubeconfig file (default location is ~/ .kube/config). This will automatically pick up all contexts defined in
Kubeconfig, i.e. works with single or multiple clusters:

docker run —-it -p 8080:8080 -u $(id —u) -v SHOME/.kube:/.kube hjacobs/kube-web-view

Open http://localhost:8080/ in your browser to see the UL

Note that Kubernetes Web View does not support all different proprietary authentication mechanisms (like EKS, GCP),
you can use “kubectl proxy” as a workaround:

kubectl proxy —--port=8001 & # start proxy in background
docker run —-it —--net=host -u $(id -u) hjacobs/kube-web-view —--clusters=local=http://
—localhost:8001

If you are using Docker for Mac, this needs to be slightly different in order to navigate the VM/container inception:

11



http://localhost:8080/

Kubernetes Web View

$ kubectl proxy —-accept-hosts '.x' —--port=8001 &
$ docker run —-it -p 8080:8080 hjacobs/kube-web-view —-clusters=local=http://docker.
—~for.mac.localhost:8001

Now direct your browser to http://localhost:8080

4.2 Single Cluster

Deploying Kubernetes Web View to a single cluster is straightforward as it will use RBAC and in-cluster ServiceAc-
count to talk with the Kubernetes API server:

’kubectl apply —f deploy/

You can now use “kubectl port-forward service/kube-web-view 8080:80” to access the UI on http://localhost:8080/ or
expose kube-web-view with a LB/Ingress. See Access Control.

4.3 Multiple Clusters

Kubernetes Web View can access multiple clusters via different methods:

e Static list of cluster API URLs passed via the --clusters CLI  option,
e.g. ——clusters=myprodcluster=https://kube-prod.example.org;
mytestcluster=https://kube-test.example.org

* Clusters defined in kubeconfig file: kube-web-view will pick up all contexts defined in the kubeconfig file (~/ .
kube/config or path given via ——kubeconfig-path). To only show some clusters, limit the kubeconfig
contexts via the ——kubeconfig-contexts command line option. This behavior is the same as for Local
Usage.

* Clusters defined in a cluster registry REST API: kube-web-view supports a custom REST API to discover
clusters. Pass the URL via ——cluster-registry-url and create a file with the OAuth2 Bearer to-
ken (——cluster-registry-oauth2-bearer-token-path). See the example Cluster Registry REST
APL

Kubernetes Web View will access the Kubernetes API differently, depending on the configuration:

* when using ——clusters: no authentication method (or token from —~—cluster—auth-token-path, or
session token if ——cluster—auth-use—-session—-token is set)

* when using ——kubeconfig-path: try to use the authentication method defined in the Kubeconfig file (e.g.
client certificate)

* when using --cluster-registry-url: use the Cluster Registry Bearer token from
——-cluster-registry-oauth2-bearer-token-path

e when using ——cluster—auth-token-path: load the access token from the given file and use it as
“Bearer” token for all Kubernetes API calls — this overwrites any of the above authentication methods

e when using ——cluster—auth-use-session—token: use the OAuth session token as “Bearer” token for
the Kubernetes API — this overwrites any other authentication method and only works when OAuth2 Support
is enabled

You can also combine the ——clusters option with kubect1l proxy to access clusters which have an unsupported
authentication method:

e start kubectl proxy —-port=8001 in a sidecar container

12 Chapter 4. Setup


http://localhost:8080
http://localhost:8080/
https://codeberg.org/hjacobs/kube-web-view/src/branch/master/examples/cluster-registry
https://codeberg.org/hjacobs/kube-web-view/src/branch/master/examples/cluster-registry

Kubernetes Web View

* run the kube-web-view container with the -——clusters=mycluster=http://localhost:8001 argu-
ment

You can use ——cluster—-auth-token-path to dynamically refresh the Bearer access token in the background.
This is useful if you need to rotate the token regularly (e.g. every hour). Either run a sidecar process with a shared
volume (e.g. “emptyDir”) to write/refresh the token or mount a Kubernetes secret into kube-web-view’s container at
the given path.

Finally, you can specify a list of external kube-web-view instances via the —-external-clusters CLI
option, e.g. ——-external-clusters=kube-web-view-us=https://kube-web-view.mycompany.
com/us; kube-web-view-eu=https://kube-web-view.mycompany.com/eu The list will be dis-
played in clusters page as static links.

4.4 Access Control

There are multiple options to secure your Kubernetes Web View deployment:

 Internal service without LoadBalancer/Ingress: this requires kubectl port-forward service/
kube-web-view 8080:80 to access the web UL This is the easiest option to set up (no
LB/Ingress/proxy/OAuth required), but inconvenient to use.

* Using a custom LB/proxy: you can expose the kube-web-view frontend through a custom proxy (e.g. nginx with
ACLs, AWS ALB with authorization, etc). The setup highly depends on your environment and infrastructure.

» Using the built-in OAuth support: kube-web-view has support for the authorization grant OAuth redirect flow
which works with common OAuth providers such as Google, GitHub, Cognito, and others. See OAuth2 Support
on how to configure OAuth in Kubernetes Web View.

4.5 Namespace Access

Kubernetes Web View allows to limit namespace access with include and exclude patterns, examples:
e use ——include-namespaces=default, dev to only allow access to the “default” and “dev’” namespaces
* use ——exclude-namespaces=kube-. % to deny access to all “kube-.*” (system) namespaces

Users can still access the “_all” namespaced resource lists and search across namespaces, but objects for non-allowed
namespaces will be filtered out. You can use this feature to give users a more streamlined experience by hiding
infrastructure namespaces (e.g. “kube-system’) from them.

Note that ——exclude—-namespaces always takes precedence over ——include-namespaces, i.e. you
can include all “foo-.*” namespaces (-—include-namespaces=foo-.*) and exclude only “foo-bar” via
(-—exclude—-namespaces=foo-bar).

Please use Kubernetes RBAC roles for proper access control, kube-web-view’s namespace filtering is just another
layer of protection. Please also read the Security Considerations.

4.4. Access Control 13



Kubernetes Web View

14 Chapter 4. Setup



CHAPTER B

OAuth2 Support

Kubernetes Web View support OAuth2 for protecting its web frontend. Use the following environment variables to
enable it:

OAUTH2_AUTHORIZE_URL OAuth 2 authorization endpoint URL, e.g. https://oauth2.example.org/authorize

OAUTH2_ACCESS_TOKEN_URL Token endpoint URL for the OAuth 2 Authorization Code Grant flow, e.g. https:
/loauth2.example.org/token

OAUTH2_CLIENT_ID OAuth 2 client ID

OAUTH2_CLIENT_ID_FILE Path to file containing the client ID. Use this instead of OAUTH2_CLIENT_ID to
read the client ID dynamically from file.

OAUTH2_ CLIENT_ SECRET OAuth 2 client secret

OAUTH2_CLIENT_SECRET FILE Path to file containing the client secret. Use this instead of
OAUTH2_CLIENT_SECRET to read the client secret dynamically from file.

SESSION_SECRET_KEY Secret to encrypt the session cookie. Must be 32 bytes base64-encoded. Use
cryptography.fernet.Fernet.generate_key () to generate such a key.

OAUTH2_SCOPE Scope for the OAuth 2 Authorization eg: ‘email openid profile’ for open ID or Azure AD, ‘https:
/lwww.googleapis.com/auth/userinfo.email” Note: this field is mandatory for Azure Active Directory

The OAuth2 login flow will (by default) just protect the web frontend, the configured credentials (in-cluster Service
Account, Kubeconfig, or Cluster Registry) will be used to access the cluster(s). This behavior can be changed and the
session’s OAuth2 access token can be used for cluster authentication instead of using configured credentials. Enable
this operation mode via -——cluster—auth-use-session-token.

The OAuth redirect flow will not do any extra authorization by default, i.e. everybody who can login with your
OAuth provider can use Kubernetes Web View! You can plug in a custom Python hook function (coroutine) via
—-—oauth2-authorized-hook to validate the login or do any extra work (store extra info in the session, deny
access, log user ID, etc). Note that the hook needs to be a coroutine function with signature like async def
authorized(data, session). The result should be boolean true if the login is successful, and false other-
wise. Examples of such hooks are provided in the examples directory. A minimal hooks . py would look like:

15


https://oauth2.example.org/authorize
https://oauth2.example.org/token
https://oauth2.example.org/token
https://www.googleapis.com/auth/userinfo.email
https://www.googleapis.com/auth/userinfo.email
https://codeberg.org/hjacobs/kube-web-view/src/branch/master/examples

Kubernetes Web View

import logging

async def oauth2_authorized(data: dict, session):

access_token = data["access_token"]

# TODO: do something with the access token, e.g. look up user info
logging.info ("New OAuth login!")

# TODO: validate whether login is allowed or not

return True +# allow all OAuth logins

This file would need to be in the Python search path, e.g. as hooks . py in the root (“/”’) of the Docker image. Pass the

hook

5.1

function as ——oauth2-authorized-hook=hooks.oauth2_ authorized to Kubernetes Web View.

Google OAuth Provider

This section explains how to use the Google OAuth 2.0 provider with Kubernetes Web View:

5.2

How

Note

follow the instructions on https://developers.google.com/identity/protocols/OAuth2 to obtain OAuth 2.0 creden-
tials such as client ID and client secret

use https://{my-kube-web-view-host}/ocauth2/callback as one of the Authorized redirect
URISs in the Google API Console

use “https://accounts.google.com/o/oauth2/v2/auth?scope=email” for OAUTH2_AUTHORIZE_URL
use “https://oauth2.googleapis.com/token” for OAUTH2_ACCESS_TOKEN_URL
pass the obtained client ID in the OAUTH2_CLIENT_ID environment variable

pass the obtained client secret in the OAUTH2_CLIENT_SECRET environment variable

GitHub OAuth Provider

to use GitHub as the OAuth provider with Kubernetes Web View:
create a new OAuth app in the GitHub UI

use https://{my-kube-web-view-host}/oauth2/callback asthe Authorization callback URL
in the GitHub UI

use “https://github.com/login/oauth/authorize” for OAUTH2_AUTHORIZE_URL

use “https://github.com/login/oauth/access_token” for the OAUTH2_ACCESS_TOKEN_URL
pass the obtained client ID in the OAUTH2_CLIENT_ID environment variable

pass the obtained client secret in the OAUTH2_CLIENT_SECRET environment variable

that any GitHub user can now login to your deployment of Kubernetes Web View! You have to configure a

-—oauth2-authorized-hook function to validate the GitHub login and only allow certain usernames:

copy hooks.py from examples/oauth2-validate-github-token/hooks.py (see examples dir)
to a new folder

customize the username in hooks . py to match your allowed GitHub user logins
create a new Dockerfile in the same folder

edit the Dockerfile to have two lines: 1) FROM hjacobs/kube-web-view: {version} (replace
“{version}”!) as the first line, and 2) COPY hooks.py / to copy our OAuth validation function

16

Chapter 5. OAuth2 Support



https://developers.google.com/identity/protocols/OAuth2
https://accounts.google.com/o/oauth2/v2/auth?scope=email
https://oauth2.googleapis.com/token
https://github.com/login/oauth/authorize
https://github.com/login/oauth/access_token
https://codeberg.org/hjacobs/kube-web-view/src/branch/master/examples

Kubernetes Web View

* build the Docker image

e configure your kube-web-view deployment and add --oauth2-authorized-hook=hooks.
ocoauth2_authorized as argument

¢ deploy kube-web-view with the new Docker image and CLI option

5.3 AWS Cognito Provider

5.3.1 Setting up Cognito

A number of steps need to be taken to setup Amazon Cognito for OAuth2. These instructions are correct as of August
2019.

Create User Pool

1. Create a User Pool
2. Choose how you want End Users to sign in (for example via Email, Username or otherwise)

3. Once you have gone through all the settings (customise to your liking) for creating a user pool, add an App
Client

Create an App Client

1. Choose a Name that is relevant to the application (eg kube-web-view)

2. Make sure the Generate client secret option is selected, and set your Refresh token expiration time to what-
ever you are comfortable with.

The App Client will then generate a Client ID and Client Secret, wich will be used later

App Client Settings

1. Select the previously created client

2. Fill in the Callback URL(s) section with https://{my-kube-web-view-host}/ocauth2/
callback

3. Under OAuth 2.0, choose the relevant Allowed OAuth Flows (eg Authorization Code Grant, Implicit Grant)

4. Choose the Allowed OAuth Scopes you want to include. email is the minimum you will need

IMPORTANT: Domain Name
You must create a domain name for OAuth to function against AWS Cognito, otherwise the required Authorization
and Token URLs will not be exposed.

You can choose whether to use an AWS-hosted Cognito Domain (eg https://{your-chosen-domain}.
auth.us—-east-1.amazoncognito.com), or to use your own domain.

5.3. AWS Cognito Provider 17


https://aws.amazon.com/cognito/

Kubernetes Web View

Update Deployment

You can now update your Deployment with the relevant Environment variables. If you have chosen to use an AWS
Cognito Domain, then the {FQDN} variable in the below section will be https://{your—-chosen-domain}.
auth. {aws-region}.amazoncognito.com. Otherwise, replace it with your domain

¢ use “https://{FQDN }/oauth2/authorize” for OAUTH2_AUTHORIZE_URL
* use “https://{FQDN }/oauth2/token” for OAUTH2_ACCESS_TOKEN_URL

* Use the App Client ID generated during “Create an App Client” in the OAUTH2_CLIENT_ID environment
variable

» Use the App Client secret in the OAUTH2_CLIENT_SECRET environment variable. If you cannot see the
secret, press “Show Details” in the AWS Console

5.3.2 Terraform

An example Terraform deployment of the above is below:

# Create the User Pool

resource "aws_cognito_user_pool" "kube-web-view" {
name = "userpool-kube-web-view"
alias_attributes = [
"email",

"preferred_username"

auto_verified_attributes = [

"email"

]

schema {
attribute_data_type = "String"
developer_only_attribute = false
mutable = true
name = "name"
required = true

string_attribute_constraints {
min_length = 3
max_length 70

admin_create_user_config {

allow_admin_create_user_only = true
}
tags = {

"Name" = "userpool-kube-web-view"

# Create the oauth2 Domain

resource "aws_cognito_user_pool_domain" "kube-web-view" {
domain = "oauth-kube-web-view"

(continues on next page)

18 Chapter 5. OAuth2 Support



https:/
https:/

Kubernetes Web View

(continued from previous page)

user_pool_id = aws_cognito_user_pool.kube-web-view.id

# kube-web-view Client

resource "aws_cognito_user_pool_client" "kube-web-view"
name =
user_pool_id =

"kube-web-view"
aws_cognito_user_pool.kube-web-view.id

allowed_oauth_flows = [
"code" ,
"implicit"

allowed_oauth_scopes = [
"email",
"openid",
"profile",

supported_identity_providers = [
"COGNITO"

generate_secret = true

allowed_ocauth_flows_user_pool_client = true

callback_urls = [
"https://{my-kube-web-view-host}/oauth2/callback"

# Outputs

output "kube-web-view-id" {
description = "Kube Web View App ID"
value = aws_cognito_user_pool_client.kube-web-view.id

"kube-web-view—-secret" {
"Kube Web View App Secret"

output
description =
value =

{

aws_cognito_user_pool_client.kube-web-view.client_secret

5.3. AWS Cognito Provider

19




Kubernetes Web View

20

Chapter 5. OAuth2 Support



CHAPTER O

Customization

Kubernetes Web View’s behavior and appearance can be customized for the needs of your organization:
* resource type links shown in the Sidebar can be customized to add CRDs, or to optimize for frequent access

e default Label & Custom Columns can be defined to show values of standardized object labels (e.g. “app”,
“version”, etc)

 External Links can be added to link objects to monitoring tools, internal application registries, custom Uls, etc
¢ the Search can be customized to search in CRDs, or to cover frequent search cases

e setting Preferred API Versions allows forcing the use of specific/newer Kubernetes API versions

* one of the Themes can be selected as default, or you can create your own CSS theme

e HTML Templates can be customized to match your branding, to add static links, and to inject custom JS/CSS
e Static Assets can be included to add images, JS, or CSS files

e Prerender Hooks can be used to add or transform view data

6.1 Sidebar

The resource types linked in the left sidebar can be customized, e.g. to include CRDs or to remove resource types
which are not frequently accessed.

Example command line argument to show the “StackSet” CRD in the “Controllers” section and to add secrets to “Pod
Management’:

——-sidebar-resource-types=Controllers=stacksets,deployments, cronjobs;Pod,
—Management=ingresses, services, pods, secrets

You can use HTML Templates for further customization of the sidebar (e.g. to add non-resource links).

21




Kubernetes Web View

6.2 Label & Custom Columns

Most organizations have a standard set of labels for Kubernetes resources, e.g. all pods might have “app” and “version”
labels. You can instruct Kubernetes Web View to show these labels as columns for the respective resource types via
the ——default-label-columns command line option.

Example command line argument to show the “application” and “version” labels for pods and the “team” label for
deployments:

—-—default-label-columns=pods=application,version;deployments=team

9

Note that the label names are separated by comma (*,”) whereas multiple different entries for different resource types
are separated by semicolon (*;”).

Users of the web Ul can remove the pre-configured label columns by passing a single comma as the labelcols
query parameter: /clusters/../namespaces/_all/pods?labelcols=,.

You can hide existing columns via the ——default-hidden-columns command line option, e.g. to remove the
“Nominated Node” and “Readiness Gates” columns from pod tables:

——default-hidden-columns=pods=Nominated Node,Readiness Gates

Arbitrary custom columns can be defined with JMESPath expressions, e.g. add a column “Images” for pods and the
column “Strategy” for deployments:

——default-custom-columns=pods=Images=spec.containers[x].image;;
—deployments=Strategy=spec.strategy

€,

Multiple column definitions are separated by a single semicolon (“;”) whereas multiple different entries for different

€, .9

resource types are separated by two semicolons (“;;”). Please be aware that custom columns require one additional
Kubernetes API call per listing.

6.3 External Links

You can configure external links per resource type or based on certain labels with these two command line options:

——object-1links Define URL templates per resource type (e.g. to link all pods to a monitoring dashboard per
pod)

—-label-1links Define URL templates per label, e.g. to link to an application registry for the “app” label, team
overview for a “team” label, etc

The URL templates are Python string format strings and receive the following variables for replacement:
{cluster} The cluster name.

{namespace} The namespace name of the object.

{name} The object name.

{label} Only for label links: the label name.

{label_value} Only for label links: the label value.

Example command line argument to add links to a monitoring dashboard per pod:

——object-links=pods=https://mymonitoringsystem/pod-dashboard?cluster={cluster};
—namespace={namespace};name={name }

22 Chapter 6. Customization



http://jmespath.org

Kubernetes Web View

Example command line argument to link resources with an “application” label to Kubernetes Resource Report:

——label-links=application=https://myresourcereport/application-{label_value}.html

Links can optionally specify the icon and link title (tooltip) by appending icon name and title text separated by pipe
(Aél?,):

—--label-links=application=https://myresourcereport/application-{label_value}.
—html|file-invoice-dollar|Kubernetes Resource Report

113 tE)

Check the Font Awesome Gallery for available icon names (some ideas: “external-link-alt”, “eye”, “th-large”,
“search”, “tools”).

6.4 Search

The default search resource types can be customized, e.g. to include Custom Resource Definitions (CRDs) or to
optimize for frequent search patterns. Pass comma-separated lists of resource types (plural name) to the following two
command line options:

—-search-default-resource-types Set the resource types to search by default (when using the navbar
search box). Must be a comma-separated list of resource types, e.g. “deployments,pods”.

——search-offered-resource—types Customize the list of resource types shown on the search page (/
search). Must be a comma-separated list of resource types, e.g. “deployments,pods,nodes”.

Note that all resource types can be searched by using a deep-link, i.e. these options will only restrict what is shown in
the HTML UI, but they will not prohibit searching for other resource types.

6.5 Preferred API Versions

You might want to change the default preferred API version returned by the Kubernetes API server. This is useful to
force using a later/newer API version for some resources, e.g. the Kubernetes HorizontalPodAutoscaler has a different
spec for later versions.

Here the example CLI option to force using new API versions for Deployment and HPA (the default is
autoscaling/v1l as of Kubernetes 1.14):

——preferred-api-versions=horizontalpodautoscalers=autoscaling/v2beta?2;
—deployment s=apps/vl

6.6 Themes

Kubernetes Web View ships with a number of color (CSS) themes. You can choose a default theme for your users via
——-default—-theme and/or limit the selection via ——theme—-opt ions. Available themes are:

darkly Flatly in night mode: dark background, blue and green as primary colors, see darkly demo
default Kubernetes Web View default theme: white background, blue as primary color, see default demo
flatly Flat and thick: white background, blue and green as primary colors, see flatly demo

slate Shades of gunmetal grey: dark grey background, grey colors, see slate demo

superhero The brave and the blue: dark background, orange navbar, see superhero demo

6.4. Search 23



https://codeberg.org/hjacobs/kube-resource-report/
https://fontawesome.com/icons?d=gallery&m=free
https://kube-web-view.demo.j-serv.de/clusters/local/namespaces/default/pods?theme=darkly
https://kube-web-view.demo.j-serv.de/clusters/local/namespaces/default/pods?theme=default
https://kube-web-view.demo.j-serv.de/clusters/local/namespaces/default/pods?theme=flatly
https://kube-web-view.demo.j-serv.de/clusters/local/namespaces/default/pods?theme=slate
https://kube-web-view.demo.j-serv.de/clusters/local/namespaces/default/pods?theme=superhero

Kubernetes Web View

You can use one of the Bulmaswatch themes to create your own.

6.7 HTML Templates

Custom Jinja2 HTML templates can override any of the default templates. Mount your custom templates into kube-
web-view’s pod and point the ——templates-path toit.

Here some of the common templates you might want to customize:
base.html The main HTML layout (contains <head> and <body> tags).

partials/extrahead.html Optional extra content for the <nead> HTML part. Use this template to add any
custom JS/CSS.

partials/navbar.html The top navigation bar.

partials/sidebar.html Template for the left sidebar, customize this to add your own links. Note that you
can change the list of resource types without touching HTML via ——sidebar-resource-types, see the
sidebar section.

partials/footer.html Footer element at the end of the HTML <body>.

You can find all the standard templates in the official git repo: https://codeberg.org/hjacobs/kube-web-view/src/branch/
master/kube_web/templates

You can build your own Docker image containing the templates or you can use a volume of type emptyDir and some
InitContainer to inject your templates. Example pod spec with a custom footer:

spec:
initContainers:
— name: generate-templates
image: busybox

command: ["sh", "-c", "mkdir /templates/partials && echo '<footer class=\"footer\
—">YOUR CUSTOM CONTENT HERE</footer>' > /templates/partials/footer.html"]
volumeMounts:

- mountPath: /templates
name: templates

containers:
- name: kube-web-view
# see https://codeberg.org/hjacobs/kube-web-view/releases
image: hjacobs/kube-web-view:latest
args:
- ——port=8080
- ——templates—-path=/templates
ports:
— containerPort: 8080
readinessProbe:
httpGet:
path: /health
port: 8080
volumeMounts:
- mountPath: /templates
name: templates
readOnly: true
resources:
limits:
memory: 100Mi

(continues on next page)

24 Chapter 6. Customization



https://jenil.github.io/bulmaswatch/
https://palletsprojects.com/p/jinja/
https://codeberg.org/hjacobs/kube-web-view/src/branch/master/kube_web/templates
https://codeberg.org/hjacobs/kube-web-view/src/branch/master/kube_web/templates

Kubernetes Web View

(continued from previous page)

requests:
cpu: 5m
memory: 100Mi
securityContext:
readOnlyRootFilesystem: true
runAsNonRoot: true
runAsUser: 1000
volumes:
- name: templates
emptyDir:
sizeLimit: 50Mi

6.8 Static Assets

As you might want to add or change static assets (e.g. JS, CSS, images), you can point Kubernetes Web View to a
folder containing your custom assets. Use the ——static-assets—-path command line option for this and either
build a custom Docker image or mount your asset directory into the pod.

6.9 Prerender Hooks

The view data (context for Jinja2 template) can be modified by custom prerender hooks to allow advanced cus-
tomization.

For example, to add generated custom links for deployments to the resource detail view, create a corou-
tine function with signature like async def resource_view_prerender (cluster, namespace,
resource, context) inafile hooks.py:

async def resource_view_prerender (cluster, namespace: str, resource, context: dict):

if resource.kind == "Deployment":
link = {
"href": f"https://cd.example.org/pipelines/ {resource.labels['pipeline-id
— ']}/ {resource.labels['deployment—id'] }",
"class": "is-1link",
"title": "Pipeline 1link",
"icon": "external-link-alt",

}
context ["1links"].append(link)

This file would need to be in the Python search path, e.g. as hooks.py in the root (“/”) of the Docker image.
Pass the hook function as ——resource-view-prerender—-hook=hooks.resource_view_prerender
to Kubernetes Web View.

Note that you can also do more advanced stuff in the prerender hook, e.g. call out to external systems to look up
additional information.

6.8. Static Assets 25



https://palletsprojects.com/p/jinja/

Kubernetes Web View

26

Chapter 6. Customization



CHAPTER /

Security Considerations

Kubernetes Web View exposes all Kubernetes object details via its web frontend. There are a number of security
precautions to make:

Do not expose Kubernetes Web View to the public without authorization (e.g. OAuth2 redirect flow or some
authorizing web proxy).

The default RBAC role for kube-web-view (provided in the deploy folder) provides full read-only access to
the cluster — modify it accordingly to limit the scope.

Design and understand your access control: decide whether you use kube-web-view only locally (with per-
sonal credentials), have a central deployment (with service credentials) to multiple clusters, use OAuth2 Support
for cluster access via ——cluster—auth-use-session-token, or have it deployed per cluster with lim-
ited access.

Understand the security risks of exposing your cluster details to Kubernetes Web View users — you should only
trust users who you would also give full read-only access to the Kubernetes API.

Check your Kubernetes objects for potential sensitive information, e.g. application developers might have
used container environment variables (env) to contain passwords (instead of using secrets or other methods),
mitigate accordingly!

Kubernetes Web View tries to have some sane defaults to prevent information leakage:

Pod container logs are not shown by default as they might contain sensitive information (e.g. access logs,
personal data, etc). You have to enable them via the ——show-container—logs command line flag.

Contents of Kubernetes secrets are masked out (hidden) by default. If you are sure that you want to show secrets
(e.g. because you only run kube-web-view on your local computer (Localhost)), you can disable this feature
via the ——show-secrets command line flag.

Note that these are just additional features to prevent accidental security issues — you are responsible for securing
Kubernetes Web View appropriately!

27



Kubernetes Web View

28

Chapter 7. Security Considerations



CHAPTER 8

Alternative Uls

Tip: Also check out the blog post about Kubernetes web Uls in 2019 for a look at some different web Uls and why

Kubernetes Web View was created.

This page lists a number of alternative, open source Uls for Kubernetes.

8.1 K8Dash

https://github.com/herbrandson/k8dash, web, node.js

“K8Dash is the easiest way to manage your Kubernetes cluster.”

8.2 Konstellate

https://github.com/containership/konstellate, web, Clojure

“Visualize Kubernetes Applications”

8.3 Kubernator

https://github.com/smpio/kubernator, web, node.js

“Kubernator is an alternative Kubernetes UL In contrast to high-level Kubernetes Dashboard, it provides
low-level control and clean view on all objects in a cluster with the ability to create new ones, edit and
resolve conflicts. As an entirely client-side app (like kubectl), it doesn’t require any backend except
Kubernetes API server itself, and also respects cluster’s access control.”

29


https://srcco.de/posts/kubernetes-web-uis-in-2019.html
https://github.com/herbrandson/k8dash
https://github.com/containership/konstellate
https://github.com/smpio/kubernator

Kubernetes Web View

8.4 Kubernetes Dashboard

https://github.com/kubernetes/dashboard, web

“Kubernetes Dashboard is a general purpose, web-based UI for Kubernetes clusters. It allows users to
manage applications running in the cluster and troubleshoot them, as well as manage the cluster itself.”

8.5 Kubernetes Operational View

https://codeberg.org/hjacobs/kube-ops-view, web
“Read-only system dashboard for multiple K8s clusters”

Uses WebGL to render nodes and pods.

8.6 Kubernetes Resource Report

https://codeberg.org/hjacobs/kube-resource-report/, web
“Report Kubernetes cluster and pod resource requests vs usage and generate static HTML”

Generates static HTML files for cost reporting.

8.7 Kubevious

https://kubevious.io/, web

“Application-centric Kubernetes viewer and validator. Correlates labels, metadata, and state. Renders
configuration in a way easy to understand and debug. TimeMachine enables travel back in time to identify
why things broke. Extensible. Lets users define their own validation rules in the UL”

8.8 Kubricks

https://github.com/kubricksllc/Kubricks, desktop app

“Visualizer/troubleshooting tool for single Kubernetes clusters”

8.9 Octant

https://github.com/vmware/octant, web, Go

“A web-based, highly extensible platform for developers to better understand the complexity of Kuber-
netes clusters.”

30 Chapter 8. Alternative Uls


https://github.com/kubernetes/dashboard
https://codeberg.org/hjacobs/kube-ops-view
https://codeberg.org/hjacobs/kube-resource-report/
https://kubevious.io/
https://github.com/kubricksllc/Kubricks
https://github.com/vmware/octant

Kubernetes Web View

8.10 Weave Scope

https://github.com/weaveworks/scope, web

“Monitoring, visualisation & management for Docker & Kubernetes”

8.10. Weave Scope

31


https://github.com/weaveworks/scope

Kubernetes Web View

32

Chapter 8. Alternative Uls



CHAPTER 9

Indices and tables

* genindex
* modindex

e search

33



	Getting Started
	Vision & Goals
	Features
	Multiple Clusters
	Listing Resources
	Searching
	Viewing Resources
	Container Logs
	Custom Resource Definitions (CRDs)
	OAuth2

	Setup
	Local Usage
	Single Cluster
	Multiple Clusters
	Access Control
	Namespace Access

	OAuth2 Support
	Google OAuth Provider
	GitHub OAuth Provider
	AWS Cognito Provider

	Customization
	Sidebar
	Label & Custom Columns
	External Links
	Search
	Preferred API Versions
	Themes
	HTML Templates
	Static Assets
	Prerender Hooks

	Security Considerations
	Alternative UIs
	K8Dash
	Konstellate
	Kubernator
	Kubernetes Dashboard
	Kubernetes Operational View
	Kubernetes Resource Report
	Kubevious
	Kubricks
	Octant
	Weave Scope

	Indices and tables

